Method for Producing Zinc Oxide, Zinc Powder, Hydrogen Fuel, and Potable Water from Zinc Ore

James H. Hawley III
Blackstone Green Energy, Inc.

May 3, 2017
The application data sheet is part of the provisional or nonprovisional application for which it is being submitted. The following form contains the bibliographic data arranged in a format specified by the United States Patent and Trademark Office as outlined in 37 CFR 1.76. This document may be completed electronically and submitted to the Office in electronic format using the Electronic Filing System (EFS) or the document may be printed and included in a paper filed application.

Secrecy Order 37 CFR 5.2

☐ Portions or all of the application associated with this Application Data Sheet may fall under a Secrecy Order pursuant to 37 CFR 5.2 (Paper filers only. Applications that fall under Secrecy Order may not be filed electronically.)

Applicant Information:

Applicant 1

Prefix Given Name Middle Name Family Name Suffix

Mr. James Henry Hawley III

Residence Information (Select One) ○ US Residency □ Non US Residency □ Active US Military Service

City Kingston State/Province WA Country of Residence US

Citizenship under 37 CFR 1.41(b) US

Mailing Address of Applicant:

Address 1 22522 Kellerman Drive, NE

Address 2

City Kingston State/Province WA

Postal Code 98346 Country US

All Inventors Must Be Listed - Additional Inventor Information blocks may be generated within this form by selecting the Add button.

Correspondence Information:

Enter either Customer Number or complete the Correspondence Information section below. For further information see 37 CFR 1.33(a).

☒ An Address is being provided for the correspondence Information of this application.

Name 1 James H. Hawley III

Address 1 22522 Kellerman Drive, NE

Address 2

City Kingston State/Province WA

Country US Postal Code 98346

Phone Number 702-204-7699 Fax Number

Email Address jinh@visionetv.com [Add Email] [Remove Email]
Title of Invention: Method for producing zinc oxide, zinc powder, hydrogen fuel, and potable water from zinc ore

Assignee Information:

Providing this information in the application data sheet does not substitute for compliance with any requirement of part 3 of Title 37 of the CFR to have an assignment recorded in the Office.

Mailing Address Information:

Signature:

A signature of the applicant or representative is required in accordance with 37 CFR 1.33 and 10.18. Please see 37 CFR 1.4(d) for the form of the signature.

Signature Date (YYYY-MM-DD) 2017-05-01
First Name James Last Name Hawley Registration Number

This collection of information is required by 37 CFR 1.76. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 23 minutes to complete, including gathering, preparing, and submitting the completed application data sheet form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.
BACKGROUND OF THE INVENTION

This invention relates to the processing of zinc-rich ores, specifically for purposes of creating zinc oxide, zinc powder, hydrogen fuel, and potable water. The invention arose from the inventor’s 30 years of experience in developing the Blackstone Mine ("Blackstone"), located in Elmore County, Idaho, approximately 80 miles southeast of Boise.

The Blackstone ore body is particularly rich in zinc. Depending on the level of refinement, zinc has a number of important industrial and pharmaceutical uses. In industry, zinc is most commonly used as an anti-corrosion agent in the galvanization of other metals (Green and Earnshaw 1203). A widely used alloy that contains zinc is brass, in which copper is alloyed with anywhere from 3 percent to 45 percent zinc, depending upon the type of brass. (Lehto 829). Besenhard notes that zinc is frequently employed as an anode material for batteries. Zinc oxide compounds are often used as a white pigment in paints and as a catalyst in the manufacturing of rubber (Emsley 503).

Zinc is also considered to be an essential mineral for the maintenance of public health (Hambidge and Krebs 1101–5). It is included in most single tablet over-the-counter daily vitamin and mineral supplements (DiSilvestro, 135, 155). Pharmaceutical preparations include zinc oxide, zinc acetate, and zinc gluconate. Zinc is believed to possess antioxidant properties, which
may protect against accelerated aging of the skin and muscles of the body. It also helps speed up the healing process after an injury (Milbury and Richer 99) and is suspected of being beneficial to the body’s immune system (Keen and Gershwin 415–31). Zinc deficiency has been linked to major depressive disorders (Swardfager et al. 911-29).

Although zinc is the 24th most abundant element in the earth’s crust, recent research suggests that known zinc reserves – at least those that can be mined profitably at current prices – will soon be exhausted, particularly given the recent closure of several major zinc mines (Shumsky, par. 1; Troen, par. 10). Zinc output lagged consumption by 296,000 tons in 2014, according to the International Lead and Zinc Study Group (de Sousa and Clarke, par. 7). This research suggests that either new zinc reserves must be discovered or the price of zinc must increase significantly to offset the cost of mining currently known, but less accessible, reserves.

The technology for recovering zinc from waste and recycled materials has been known since at least 1888. For example, the Waelz process is a method of recovering zinc and other relatively low boiling point metals from EAF flue dust and other materials using a rotary kiln (Harris 702-720). The process consists of treating zinc containing material, in which zinc can be in the form zinc oxide, zinc silicate, zinc ferrite, zinc sulphide together with a carbon containing reductant/fuel, within a rotary kiln at 1000°C to 1500°C. The kiln feed material comprising zinc 'waste', fluxes and reductant (coke) is typically pelletized before addition to the kiln. The chemical process involves the reduction of zinc compounds to elemental zinc (boiling point 907°C) which volatilizes, which oxidizes in the vapor phase to zinc oxide. The zinc oxide is collected from the kiln outlet exhaust by filters/electrostatic precipitators/settling chambers.

In the indirect process, metallic zinc is melted in a graphite crucible and vaporized at temperatures above 907°C (typically around 1000°C). Zinc vapor reacts with the oxygen in the air to produce zinc oxide, accompanied by a drop in its temperature and bright luminescence. Zinc oxide particles are transported into a cooling duct and collected in a baghouse. This method was popularized in 1844 by French painter E.C. LeClaire and is commonly known as the French process (Holley 153). Its product normally consists of agglomerated zinc oxide particles with an average size of 0.1 to a few micrometers. By weight, most of the world's zinc oxide is manufactured via the French process.
More recently, University of Delaware researchers tested a solar reactor they developed to produce hydrogen from sunlight (Roberts, par. 1). Eight weeks of sophisticated testing at temperatures up to 1200°C revealed that the reactor’s mechanical, electrical and thermal systems worked as predicted. He was even able to collect small amounts of the stored solar energy in a vial, despite operating below critical reaction temperatures in order to validate the system’s components in a high-temperature environment. The reactor is designed to accomplish the first step in a two-step water-splitting process to generate hydrogen renewably from sunlight. The reactor, which is closed to the atmosphere, uses gravity to feed zinc oxide powder (the reactant) into the system through hoppers that dispense the powder onto a ceramic surface. There it undergoes a thermochemical reaction upon exposure to highly concentrated sunlight within the reaction cavity, producing solar fuel.

A research team from the University of Colorado at Denver incorporated desalination into microbial fuel cells, a new technology that can treat wastewater and produce electricity simultaneously (Luo, Jenkins, and Wren 340-344). They were able produce hydrogen gas, which is collectable and storable, thus making improvements in the technology, although the practicality of their process remains in question.

Stanford University scientists have created an advanced zinc-air battery with higher catalytic activity and durability than similar batteries made with platinum and other costly catalysts (Li 1805; Shwartz, par. 1). The researchers believe their discovery could lead to the development of a low-cost alternative to conventional lithium-ion technology.

Two pyrometallurgical processes have been designed and developed for the treatment of zinc-containing wastes: (i) a high-temperature submerged plasma zinc fuming process, and (ii) a reductive roast followed by oxidative ISASMELT process (Versheure 237-251). Continuous operation of these processes has been demonstrated on a pilot scale. It has been shown that high zinc fuming rates can be obtained while retaining vessel integrity through the formation of a stable freeze lining. A mathematical process model using FactSage and ChemApp thermodynamic software has been developed, which simultaneously describes chemical, thermal and heat transfer outcomes of these processes.

The chemistry of producing hydrogen through the dissociation of zinc oxide is also well known. In 2005, a team of scientists at the Weitzman Institute in Israel introduced an energy self-
sufficient hydrogen production process by dissociating zinc oxide with a solar reactor to produce zinc powder (Piquepaille, par. 8). The powder was mixed with 350°C water to produce hydrogen, reprecipitate the zinc oxide for further dissociation, and then reused to produce more hydrogen. Promising as this research was, the project did not address the production of the zinc oxide catalyst used to make the zinc powder, nor did it address the energy required to create the compound.

In contrast, the invention begins at the source through the vaporization of zinc ore. The invention is an end-to-end process designed for the production of hydrogen fuel, zinc oxide, zinc powder, economically significant metals, and potable water from ore containing sufficient amounts of zinc to allow self-sustainable hydrogen production for powering the invention and its associated devices. By increasing zinc content above the 3 percent (60 lbs/ton) required for self-sustainability, my invention will produce an excess of hydrogen. The extra fuel can be used for firing a high-temperature reactor for dissociating zinc oxide into zinc powder. Zinc powder is easier to handle and can be safely transported to power plants and fuel depots where hydrogen fuel could be easily generated using the zinc powder/water reaction. Instead of coal- or gas-fired power plants, zinc powder is a far more efficient and inexpensive energy source.

In conclusion, insofar as I am aware, there is no truly self-powered processing circuit for the production of zinc powder directly from zinc ore. I believe my invention overcomes this obstacle by creating a sustainable refining process that requires no fuel sources beyond the ore itself. With fewer than 60 hydrogen fuel stations in the United States, the widespread use of hydrogen-powered vehicles has been stunted. Zinc powder offers a viable method for hydrogen production at local hydrogen fueling stations, ultimately clearing the way for widespread distribution and an excellent alternative to fossil fuel pollution. In the not-too-distant future, drums of zinc powder could become the replacement for barrels of oil.

SUMMARY

The invention seeks to replace the use of fossil fuels expended in previous production methods of hydrogen gas; instead, relying on water electrolysis and thermochemical reactions using metallic oxides and powders. Conventional electrolytic production of hydrogen requires more energy than is produced from the hydrogen generated, making the process self-defeating as
an energy-neutral method. The advantages to the invention include, but are not necessarily limited to:

1. Economical hydrogen production
2. Energy self-sufficiency
3. Zero environmental emissions
4. Clean energy
5. Fewer greenhouse gases
6. Reduced carbon footprint
7. On-site portable hydrogen production
8. Wider hydrogen distribution channel
9. Advancing the use of electrical vehicles
10. Viable alternative to fossil fuels
11. Alternative fuel for electrical generation
12. Alternative power for desalination
13. Potable water production
14. Solar power storage

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 depicts the entire self-sustaining ore processing circuit for creating hydrogen fuel, zinc oxide, zinc powder, and a polymetallic matte consisting of copper, silver, and gold. Figure 2 details the crushing, grinding, and screening circuit more broadly referenced in Figure 1.

DETAILED DESCRIPTION AND OPERATION

An ore processing circuit is provided in which raw ore (1.1) is graded for zinc content and submitted to a crushing and grinding process (1.2 and Figure 2) that produces a -200 mesh dry ground ore feed that is conveyed to a proprietary graphite lined electric kiln (1.5). Three-phase electrical current for the kiln is provided by a hydrogen-powered internal combustion engine (ICE) coupled to an electrical generator operating at 3600 rpm (1.4). A 35 Kw solar panel array and electrical converter act as a backup power supply for the kiln in the event power from the ICE generator is unavailable.
The dry ground ore is conveyed to an electric kiln (1.5). After the ore is fired at a temperature of 1000°C for approximately two to three hours, the zinc content in the ore vaporizes, the vapor stream vents to a hydrogen reactor and zinc oxide filtering vessel (1.8) where water (1.6) is introduced into the vapor stream to strip the H₂ molecule from the water, producing hydrogen gas and precipitating zinc oxide from the vapor stream (1.9). Firing continues at 1200°C to 1300°C where metallic copper, silver, and gold collect at the base of the kiln, the impurities collect in a borax glass slag layer floating on top of the metals. The metals and slag are tapped from the base of the kiln into molds as copper matte (1.11). The zinc oxide is pneumatically removed from the filter cartridges in the hydrogen/zinc oxide reactor and collection vessel to an automated packaging system for distribution to market or retained for production of zinc powder in the invention’s solar/hydrogen powered zinc oxide dissociation reactor (1.10) the polymetallic copper matte produced in the second temperature phase is shipped to a smelter for further refining and certification.

The entire processing circuit is self-sustaining insofar as hydrogen fuel is carried from the hydrogen reactor and zinc oxide filtering vessel (1.8) to a hydrogen-powered generator (1.4). Excess hydrogen fuel is sent to storage tanks (1.13) for later use in the processing circuit. Water from the hydrogen/zinc oxide reaction (1.12) can be reused in the hydrogen reactor (1.8) or used as potable water.

The entire zinc-to-hydrogen and zinc oxide processing circuit uses no fossil fuels, relying solely on the hydrogen produced during the processing cycle or solar energy as a backup.

Figure 2 details the crushing, grinding, and screening process broadly referenced in Figure 1 (1.2). Ore is analyzed for zinc content using hand-held X-ray fluorescence (2.2). Ore containing at least 60 pounds per ton of zinc (3 percent) is sent to a jaw crusher (2.3) where it is crushed to -3/4-inch and conveyed to a pulverizer where it is ground to -200 mesh. A circular vibrating screen (2.4) removes oversized ore, and returns it by conveyor (2.5) to the pulverizer for regrinding (2.6). Properly sized ore is then sent by conveyor (2.7), to the electric kiln for the first stage firing (1000°C) and zinc vaporization (also known as “zinc fuming”). The vapor stream vents to a hydrogen reactor and zinc oxide filtration system (commonly known as a bag house) where the introduction of water liberates hydrogen gas by stripping the hydrogen
molecule from the water and zinc oxide precipitates as a non-toxic white powder as the zinc vapor stream cools.

Following the zinc/hydrogen/water reaction (2.8) borax glass and sodium carbonate (soda ash) are added to the residual ore (calcine) from an overhead mixer. With the addition of the reagents to the calcine the kiln temperature is raised to between 1200°C to 1300°C (stage 2 firing). Fluxes absorb the impurities into a liquid slag layer that forms on the top of the molten copper, silver, and gold. The metals are poured into molds as a polymetallic matte and further refined into pure metals at a third-party smelter (2.14), while the borax slag is reused or recycled.

The invention is designed to create a self-perpetuating energy cycle for the production of hydrogen, zinc oxide, and zinc powder with near zero atmospheric emissions. The invention will use no external energy in its processing cycles which includes stand-by solar energy if the zinc content in the ore falls below the minimum requirements needed for self-sufficient hydrogen fuel production. With regard to stand-by solar energy the invention includes a method for the storage of solar energy in zinc oxide coatings on the collector panels and combination zinc powder/silver storage batteries.

The invention includes proprietary designs for a graphite lined electric kiln used to tap molten metals from its base and boil off zinc into a vapor transport system connected to a hydrogen reactor and zinc oxide collection vessel. The kiln has two controlled heating phases, the first a 1000°C for vaporizing the zinc content in the ore, and a second 1200°C to 1300°C temperature phase for reducing the remaining calcine into metallic matte.

The invention includes the design of a companion reactor, collection vessel, and pneumatic filtering system for containing hydrogen and zinc oxide from the zinc vapor stream when it reacts with water in the chamber. The vessel and filters are designed to capture and then pneumatically release zinc oxide from the filter cartridges as the compound precipitates from the zinc vapor stream upon cooling. Zinc oxide is pneumatically conveyed to storage containers or an automated packaging machine.

A portion of the hydrogen gas generated from the primary processing phase is used to operate electrical generators for powering the kilns, equipment and vehicles required to load, crush, screen, grind, and transport zinc ore into the invention’s ore processing circuit.
The invention also includes a graphite lined zinc oxide dissociation reactor fueled by a combination of solar energy and hydrogen from the ore processing cycle. The reactor is designed to produce temperatures in excess of 1800°C to dissociate zinc oxide into zinc powder. The invention’s kiln, reactor, control valves, pumps, conveyors, reagent feeders, metering devices, and sensors are controlled by a computer regulated system utilizing proprietary software authored by the inventor.

The invention includes an additional design for a portable hydrogen gas production circuit using the zinc powder manufactured by the hydrogen reactor from the primary invention described above. The zinc powder is mixed with superheated sea, waste or tap water at 350°C to produce on-site hydrogen for vehicle fueling stations, industrial depots, power plants, desalination plants, and any other facility either capable or can be modified to operate on hydrogen as a fuel.

While the zinc and superheated water process is a well-known prior-art chemical reaction for hydrogen gas production, the invention differentiates itself through its portability, zinc oxide catalyst recycling, and solar energy storage used in the on-site production of hydrogen gas. The invention seeks to widen the distribution of hydrogen gas as a clean, environmentally friendly fuel for the reduction of fossil fuel use and hydrocarbon emissions.

The foregoing invention has been described in accordance with the relevant legal standards, thus the description is exemplary rather than limiting in nature. Variations and modifications to the disclosed embodiment may become apparent to those skilled in the art and fall within the scope of the invention.

REFERENCE NUMERALS

1.1 Zinc ore
1.2 Crush and grind
1.3 35 Kw solar panel
1.4 Hydrogen-run generator
1.5 Electric kiln
1.6 Air/water injection
1.7 Hydrogen/zinc oxide filter vessel
1.8 Zinc vaporization process
1.9 Zinc oxide production
1.10 Packaging and marketing
1.11 Copper, silver, and gold matte production
2.1 Zinc ore
2.2 Grading ore for zinc content
2.3 Crushing and grinding to ¼-inch gravel
2.4 Circulatory vibrating screen
2.5 Oversized return conveyor
2.6 Pulverization of ore to -200 mesh
2.7 Ore feed conveyor
2.8 Ore/reagent mixer
2.9 Kiln gantry hoist
2.10 Electric kiln
2.11 Zinc oxide recovery filter
2.12 Packaging and marketing
2.13 Pouring copper, silver, and gold ores into metallic matte
2.14 Shipment to third-party smelter for refining and certification

CLAIM

What is claimed is:

1. An environmentally safe, closed circuit for processing zinc-rich ores into zinc oxide, zinc powder, hydrogen fuel, and potable water substantially as shown and described.

2. A technology utilizing zinc oxide and zinc powder for improving the efficiency in photovoltaic cells and panels. The technology consists of absorption coatings for solar receptors and the storage of solar energy. Unlike the use of such coating in miniature photovoltaic cells, as in experiments at the University of Arkansas, the claimant intends to expand the coating technologies to large-scale solar collectors that will simultaneously store solar energy for later use. The claimant intends to expand the invention into a highly...
efficient, large-scale photovoltaic cells capable of storing significant amounts of reserve energy when sunlight is unavailable.

ABSTRACT

An environmentally friendly closed circuit for processing zinc-rich ores into zinc powder, zinc oxide, hydrogen fuel, and potable water is described. The invention replaces the use of fossil fuels expended in previous production methods of hydrogen gas; instead, relying on water electrolysis and thermochemical reactions using metallic oxides and powders. Conventional electrolytic production of hydrogen requires more energy than is produced from the hydrogen generated, making the process self-defeating as an energy-neutral method.
Figure 1 of 2
Method for producing zinc oxide, hydrogen fuel, and portable water from zinc ore

Provisional patent application
REFERENCES

